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Abstract� A multigrid preconditioned conjugate gradient algorithm is introduced into a semiconductor device modeling
code� DANCIR� This code simulates a wide variety of semiconductor devices by numerically solving the drift�di�usion equations�
The most time consuming aspect of the simulation is the solution of three linear systems within each iteration of the Gummel
method� The original version of DANCIR uses a conjugate gradient iteration preconditioned by an incomplete Cholesky
factorization� In this paper� we consider the replacement of the Cholesky preconditioner by a multigrid preconditioner� To
adapt the multigrid method to the drift�di�usion equations� interpolation� projection� and coarse grid discretization operators
need to be developed� These operators must take into account a number of physical aspects that are present in typical devices�
wide scale variation in the partial di�erential equation �PDE� coe�cients� small scale phenomena such as contact points� and an
oxide layer� Additionally� suitable relaxation procedures must be designed that give good smoothing numbers in the presence
of anisotropic behavior� The resulting method is compared with the Cholesky preconditioner on a variety of devices in terms
of iterations� storage� and run time�
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�� Introduction� Currently most integrated circuits are designed in a �trial and error� fashion� That
is� prototypes are built and improved via experimentation and testing� In the near future it may be possible
to signi�cantly reduce the cost of building new devices by using computer simulations to shorten the design
cycle� To accurately perform these complex simulations in three dimensions� however� new algorithms and
high performance computers are necessary�

In this paper we discuss the use of multigrid preconditioning in conjunction with a conjugate gradient
algorithm inside a semiconductor device modeling code� DANCIR ���� DANCIR is a three�dimensional semi�
conductor device simulator capable of computing the solution of the steady�state drift�di	usion equations�
The solution of the drift�di	usion equations involves the solution of a large nonlinear set of equations that
arise from the spatial discretization of the drift�di	usion equations on a rectangular grid� These nonlinear
equations are resolved using Gummel�s method which requires three symmetric linear systems to be solved
within each Gummel iteration� It is the solution of these linear systems that comprises the dominant compu�
tational cost of a simulation� The original version of DANCIR uses an incomplete Cholesky preconditioned
conjugate gradient algorithm to solve these linear systems� Unfortunately� this algorithm has a number of
disadvantages
 �� it can take many iterations to converge or it may not converge at all in some cases� 
� it
can require a signi�cant amount of computing time� and �� it is not very parallelizable�

In this study we consider an alternate solution method based on a multigrid preconditioner� The multi�
grid method uses iterations on a hierarchy of grids to accelerate the convergence on the �nest grid� The
method requires interpolation� projection� and discretization operators for the di	erent grids to be de�ned�
Developing these operators in the context of the drift�di	usion equations requires some care due to the
presence of greatly varying physical phenomena including wide scale variation in PDE coe�cients and small
scale phenomena such as contact points� In both cases� the development of operator dependent interpolation
and projection is essential to improving the performance� Further� the presence of certain device character�
istics such as oxide layers requires some care to insure that the di	erent operators and the grid hierarchy
adequately approximate the PDE on all levels� Finally� the presence of a severely stretched grid gives rise
to anisotropic phenomena that requires a suitable relaxation procedure�

The paper is organized as follows� x
 describes the drift�di	usion equations that are most commonly
used to model semiconductor devices� We also present the numerical methods currently used in a particular
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simulation code developed at Sandia National Laboratories� In x� we describe the multigrid preconditioner
as well as some of the choices necessary to implement this algorithm for the drift�di	usion equations� In x��
the resulting method is compared with the incomplete Cholesky preconditioner on a variety of devices in
terms of iterations� storage� and run time� We conclude in x� with a summary of our results�

�� The Drift�Di�usionEquations� The drift�di	usion model for semiconductor device modeling con�
sists of a set of three� coupled� nonlinear partial di	erential equations
 the potential equation plus two
continuity equations� one each for the electron and hole current densities� For a complete derivation of the
equations the reader can consult a variety of references� for example ��� ��� ����

The potential or Poisson equation is given by

�r�E � ��r�� � ���
���

where � is the scalar permittivity of the semiconductor� � is the electric potential� and E � �r� is the
electric �eld� The total electric charge density� �� is given by

� � q�p� n� ND � NA���
�
�

where q is the elementary charge� n is the density of free electrons� p is the density of holes� ND is the density
of donor impurities� and NA is the density of acceptors�

The continuity equations for the electron and hole currents can be stated as

�n
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�r���nnE �Dnrn�� R � ���
���
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�t
�r���ppE �Dprp�� R � ���
���

where �n and �p are the electron and hole mobilities respectively� Dn and Dp are the di	usion coe�cients�
and R is a term that accounts for the recombination and generation of electrons and holes� The mobilities
and the recombination�generation term are functions of various physical and semi�empirical parameters and
are usually modeled through a variety of sophisticated methods �see for example ������

���� Scaling of Variables� The wide range in magnitude of both the dependent and independent vari�
ables creates di�culties in the numerical solution process� Independent variables such as the concentrations
of impurity dopings ND and NA range from ���� to ���� carriers per cubic centimeter� Dependent variables
such as the carrier densities n and p can range from ��� to ���� carriers per cubic centimeter� The di�culties
associated with the wide range in the magnitude of the dependent variables can be circumvented to a certain
extent by employing di	erent variables� However it has been noted by Polak ��
� that changing variables
amounts to trading high variability in the dependent variables for increased nonlinearity in the equations�

In the DANCIR code� the carrier concentrations are scaled by using the Slotboom variables� u and v


n � nie exp

�
q�

kT

�
u��
���

p � nie exp

�
�q�
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�
v��
���

where nie is the e	ective intrinsic carrier concentration� k is the Boltzmann constant� and T is the bulk
material temperature�

One of the advantages to using the Slotboom variables is that the current continuity equations assume
the form of Poisson equations facilitating the numerical solution process� Using the Slotboom scaling the
current densities can be written as

Jn � kT�nnie exp�q��kT �ru��
���

Jp � �kT�pnie exp��q��kT �rv��
���
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The resulting steady�state� drift�di	usion equations can then be expressed as
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���� Nonlinear Equations� If the functions f�� f�� and f� are de�ned by equations �
���
���� then
the nonlinear system of equations arising from the spatial discretization of the drift�di	usion equations can
be written more compactly as
 F ��� u� v� � �f�� f�� f��T � �� The DANCIR code uses Gummel�s method ���
�also known as nonlinear block Gauss�Seidel� to solve this nonlinear equation� One Gummel iteration consists
of solving f� for u� f� for v� and then f� for �� Gummel�s method has the advantage of only having to solve
three linear systems at each iteration� The disadvantage is that convergence can be quite slow in certain
circumstances� for example in high voltage situations�

In practice� the solution of the steady�state� drift�di	usion equations is accomplished by solving a series
of continuation steps where each continuation step is in turn a steady�state problem� The initial steady�state
or equilibrium problem solved is that of the device with no external voltages applied� The potential at the
contacts is then incremented until the desired voltage is reached at the contacts� The initial estimate for the
potential is computed by solving a nonlinear potential equation� The DANCIR code uses a Newton method
for this calculation because the Jacobian is symmetric in this special case thereby not incurring any extra
expense for storage over the Gummel iteration�

���� Linear Equations� Within each Gummel iteration� � linear systems of equations must be solved�
As we mentioned above� the use of the Slotboom variables transforms the continuity equations for the electron
and hole currents into a set of self�adjoint partial�di	erential equations� The linear systems resulting from
the discretization are therefore symmetric and positive de�nite� The particular method used in the original
version of the DANCIR code is a preconditioned conjugate gradient method with an incomplete Cholesky
factorization used as the preconditioner ���� The solution of these linear systems usually constitute the
dominant amount of work so any improvement in this part of the code would have a signi�cant e	ect in
overall performance�

In the remainder of this paper� we discuss the replacement of this preconditioner by a multigrid precon�
ditioner and make comparisons between the two preconditioners�

�� Multigrid Preconditioner� The multigrid algorithm is a fast and e�cient method for solving the
systems of equations that arise from many PDE applications� We give only a brief sketch of one type of
multigrid algorithm� Detailed descriptions of more general multigrid algorithms can be found in ��� ���

One iteration of a simple multigrid �V� cycle consists of smoothing the error using a relaxation technique
�such as Gauss�Seidel�� �solving� an approximation to the smooth error equation on a coarse grid� interpolating
the error correction to the �ne grid� and �nally adding the error correction into the approximation �and
perhaps performing some additional relaxation steps�� An important aspect of the multigrid method is that
the coarse grid solution can be approximated by recursively using the multigrid idea� That is� on the coarse
grid� relaxation is performed to reduce high frequency errors followed by the projection of a correction
equation on yet a coarser grid� and so on� Thus� the MG method corresponds to a series of relaxation
iterations on a hierarchy of grids with di	erent mesh sizes followed by the use of a direct solver on the
coarsest grid �which is usually a fairly small grid�� We summarize one iteration of this procedure in Figure
��

It is important to note that when multigrid is used as a preconditioner within the conjugate gradient
method� it is necessary that the preconditioner be symmetric� This can be accomplished in the above
procedure by choosing the postrelaxation ��relax
� in Figure �� as the transpose of the prerelaxation ��relax�
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Procedure MG�b� u� level�
if �level �� COARSEST � then u� A��levelb
else

u�relax�b� u� level�
r� b� Au
�r� Rr �� R is a projection operator ��
v � �
v � MG��r� v� level � ��
u� u� Pv �� P is an interpolation operator ��
u�relax
�b� u� level�

endif

Fig� �� MG Algorithm for Alevelu � b

in Figure �� ���� The Jacobi iteration is one smoother which has this property when it is used for prerelaxation
and postrelaxation� Another smoother combination with this property consists of using red�black Gauss�
Seidel for prerelaxation and black�red Gauss�Seidel for postrelaxation�

To complete the de�nition of the above method� we will de�ne a grid hierarchy� grid transfer operators�
a coarse grid discretization scheme� and a speci�c relaxation method�

���� Grid Hierarchy� In the DANCIR code� the discretization mesh used consists of a tensor product
grid of one�dimensional arrays� In de�ning a grid hierarchy for the multigrid method� we consider only
coarsening by a factor of 
 to facilitate code development� It should be noted that in order to carry out this
procedure it is necessary to restrict the size of the �ne grid� Speci�cally� for two�dimensional simulations�
the �ne grid must contain �
km� ��� �
jn� �� points where max�k� j� de�nes the number of levels in the
hierarchy and �m � �� � �n � �� is the size of the coarsest grid� For the case k � j� the grid hierarchy is
de�ned as follows


G� 
 
km� � � 
jn � ��
G� 
 
�k���m � � � 
�j���n� ��

���

Gj 
 
�k�j�m � � � n� ��
���

Gk 
 m � � � n� ��

Though this scheme is straight�forward� some care must be taken due to certain device characteristics such
as the presence of an oxide layer as well as the contacts� This di�culty will be discussed after de�ning the
grid transfer operators and the coarse grid discretization�

���� Grid Transfer Operators� In simple multigrid codes it is quite common to use linear inter�
polation for second order problems and full�weighting or half�weighting for projection ���� In most cases
these simple grid transfer operators are su�cient and the resulting multigrid scheme works quite well� How�
ever� when the PDE coe�cients vary greatly �or contain a discontinuity�� these choices for the grid transfer
operators may not be su�cient� To illustrate this point consider the simple PDE

�w�x� ux �x � f�x�� � � x � ������
�

with Dirichlet boundary conditions at x � � and x � � and

w�x� �

�
	 x � ��
� x � ��

�
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If linear interpolation �or even higher order interpolation� is used to obtained the value of u at x � ��� the
resulting quantity w�x�ux will in general be discontinuous� Since this term is di	erentiated� it is quite clear
that this discontinuity is undesirable� That is� interpolating such that u is smooth �i�e� ux is constant� at
the interpolation point is not the right criterion� Instead� we need to take into account the function w�x��
One possibility �see ���� or ���� is to require that the term w�x�ux be constant at the interpolated points�
This results in an interpolation formula of the form

u�x� �
w�x� h

� �u�x� h� �w�x� h
� �u�x� h�

w�x� h
� � �w�x� h

� �
�������

for the above example on a uniform grid �with mesh spacing h on the �ne grid�� This formula can be
veri�ed by observing that when it is used� the central di	erence approximations to w�x�ux at x � h

� and

x� h
� are equal� It should be noted that the above interpolation operator could have been de�ned on simply

algebraic terms� Speci�cally� when ����
� is discretized in a standard way the resulting di	erence operator
is tridiagonal� To solve this tridiagonal system� a procedure called cyclic reduction can be used ���� This
procedure is essentially Gaussian elimination with a special elimination ordering of the points� The �rst step
corresponds to eliminating all the even numbered points �where the points are numbered sequentially along
the line�� If we make an analogy between the multigrid algorithm and cyclic reduction� the interpolation
algorithm corresponds to one step in the back solve of cyclic reduction�

Generalization of the interpolation procedure given above to two or three�dimensional PDE�s is not
obvious as the exact analogy with cyclic reduction is no longer possible� In this work we consider the
following interpolation procedure in 
D�

�� Split the �nite di	erence operator on Gl � Al� into matrices corresponding to the x� and y derivatives
as well as the �th order terms


Al � Ax
l � Ay

l �Gl�


� Average the derivative operators in the direction orthogonal to the derivative


�Ax
l �j� �

�

�
Ax
l �j � �� �

�



Ax
l �j� �

�

�
Ax
l �j � ���

where Ax
l �j� is the x derivative operator for level l on horizontal line j of the grid�

�� Interpolate in the x direction� For points where the coarse and �ne grid coincide� use injection�
For points in between 
 coarse grid points use the one�dimensional procedure outlined above in
conjunction with �Ax

l �i�� Speci�cally� set the interpolated value at �i� j� such that

f �Ax
l �j�ugi � ��

where u is the vector of interpolated values corresponding to line j of the grid� This essentially
corresponds to the back solve step of cyclic reduction applied to �Ax

l �j�� It is important to note that
at this point the operator u is de�ned on every other horizontal line�

�� Repeat the procedure in the y direction for the horizontal lines that have not yet been de�ned in
the previous x interpolation� In particular� for �ne grid points which are surrounded by � coarse
grid points� use the interpolated values from the x interpolation�

E	ectively� this procedure corresponds to performing the interpolation in one direction after another us�
ing one�dimensional di	erence operators de�ned from the original di	erence operator� The overall procedure
is similar to that in ��� where they use an arithmetic average of the harmonic averages �as opposed to the
harmonic average of the arithmetic averages� to de�ne the interpolation operator�
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For the projection operator we simply use the transpose of the interpolation scheme� Given that the
di	erence operator is symmetric� this is a quite natural way to de�ne a weighted projection operator� Using
this projection on a one�dimensional problem corresponds to performing the forward elimination step of a
cyclic reduction procedure on the tridiagonal discretization matrix�

���� Coarse Grid Discretizations� In typical multigrid codes� there are two ways of obtaining PDE
discretizations for the coarser grids� One reliable technique� Galerkin coarsening� uses the interpolation and
projection operators�

While this procedure works well for two and three�dimensional problems� it has several disadvantages�
For example� when standard interpolation and projection operartors are used the Galerkin procedure may
result in a larger di	erence stencil on coarser grids� Thus the programmer would have to write new codes
for the coarse grid discretization as well as incur an extra storage penalty�

An alternative to the Galerkin procedure is to use an averaging procedure to generate PDE coe�cients
in conjunction with the di	erencing scheme used on the �ne grid� There are many possible averaging
procedures� In this work� we use a scheme based on the �D Galerkin operator� Speci�cally� when a Galerkin
procedure is used in conjunction with the operator dependent interpolation and projection on ����
�� the
resulting coarse grid operator is equivalent to the reduced operator obtained with � step of cyclic reduction�
For ����
�� this coarse grid operator is equivalent to a three point di	erence operator which corresponds to
using the �ne grid di	erence scheme on the coarse grid in conjunction with the PDE coe�cients

�w�x� �

 w�x� h� w�x� h�

w�x� h� � w�x� h�
�

For higher dimensional problems we �rst split the �nite di	erence operator into di	erent terms� A standard
averaging procedure is used to approximate the constant term� Gl� on the coarse grid� For the derivative
terms� we �rst form averages �e�g� �Ax

l �i�� as for the interpolation� Then� we use a cyclic reduction procedure
on the �D problems in each of the di	erent coordinate directions to generate approximations to the PDE
coe�cients on the coarser grid� Overall� the resulting procedure can be viewed as an approximation to the
reduced equations of cyclic reduction �or the Galerkin coarsening� where the operator has �rst been split
into component terms� the cyclic reduction procedure has been applied� and then the terms are regrouped
to form the coarse grid discretization�

���� Relaxation Method� There are two major possibilities for the relaxation method
 point relax�
ation and line relaxation� It is well�known in the multigrid community that line relaxation �or semicoarsening�
should be adopted when the method is applied to anisotropic problems� That is� while standard point re�
laxation methods su�ciently smooth the error for the Poisson equation� their performance is quite poor for
severely anisotropic problems� If� however� line relaxation is used instead of the point relaxation� it is once
again possible to obtain good multigrid convergence rates even for anisotropic problems� We omit the details
and refer the reader to ��� where a Fourier analysis is given illustrating this phenomenon� In our case� the
highly stretched grid �e�g� Figure 
� is a source of anisotropic phenomena�� Thus� we have implemented
red�black Gauss�Seidel as well as red�black alternating line Gauss�Seidel for prerelaxation and black�red
point and line Gauss�Seidel for postrelaxaton� Additionally� we have implemented local Gauss�Seidel proce�
dures to take into account the physics of the simulation� In particular� the majority of the di�culties for
the smoother are caused by the top of the device �near the contacts� oxide layer� and doped regions�� The
local Gauss�Seidel procedures consist of performing red�black �point or alternating line� Gauss�Seidel on
the residual equation restricted to the domain covering the upper ��� of the device� This local procedure
is usually used after the standard relaxation procedure to improve the smoother in the upper part of the
device �at only ��� the cost of the global procedure��

� It is not clear whether line relaxation would be necessary with another grid structure� That is� if the sole source of the
anisotropic behavior is the grid� it may not be necessary to use line relaxation�
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Fig� �� Grid obtained by keeping every eighth line from a typical MOSFET grid�

Fig� �� �D grid hierarchy

���� Contact Points and Oxide Layer� In de�ning the grid hierarchy no particular attention has
been given to device characteristics such as the oxide layer and the contact points present in many devices�
It is entirely possible that the location of the boundary between the oxide and the interior or the boundary
between a contact point and the interior could di	er between the �ne and coarse grids� For example� consider
the one�dimensional hierarchy of � grids shown in Figure �� If we have a contact region �denoted in bold�
which covers 
 points on the �ne grid� then it e	ectively becomes smaller on the next coarser grid� To
prevent this phenomenon� there are two possible solutions� One option is to choose the grid hierarchy in
conjunction with the contacts �and oxide� such that the boundaries of these regions remain in place� The
other possibility� which we consider� is to keep the grid hierarchy but to modify the discretization and right
hand side on the coarse grid such that the location of the contact boundary is maintained� For example� the
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matrix equation corresponding to the �ne grid above
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Notice that the main change is the second equation �discretization and right hand side projection�� This
procedure corresponds to cyclic reduction and can also be motivated by trunction error arguments� The main
point is that the operator dependent schemes automatically take care of these situations to maintain a proper
coarse grid approximation� Of course� this example is one�dimensional and in higher dimensions it will not
be possible to have an exact representation on the coarse grid� However� by using the operator dependent
grid transfers and discretizations we need not worry too much about the grid hierarchy with respect to the
oxide and the contacts� Further� any small degradations in the coarse discretization �for example near the
corners of an oxide region� will in general not cause great di�culties for a conjugate gradient routine �as the
problem areas will be of very low rank��

�� Algorithm Summary� To summarize� the numerical algorithm used for the nonlinear equations
is the Gummel iteration� Gummel�s method requires � linear system solutions� For these a conjugate
gradient algorithm is used in conjunction with a multigrid preconditioner� Finally� within the multigrid
preconditioner� Gauss�Seidel is used as a smoother with red�black sweeps for prerelaxation and black�red for
post relaxation� It should be noted that it is possible to use multigrid as a solver instead of a preconditioner
�i�e� without the conjugate gradient iterations�� However� in our experiments we found that the multigrid
preconditioned conjugate gradient code out performed the use of just multigrid� We believe that there are
two primary reasons for this


� The presence of small�scale e	ects such as small contacts and doping regions which disappear on the
coarse grid degrade the multigrid coarse grid operator�

� The interpolation� projection and coarse grid scheme used are a bit simplistic� These choices were
made partially because they were easy to incorporate into a large already existing program with fairly
complicated data structures and a simplistic scheme for handling nonrectangular grids �resulting
from the oxide region�� Unfortunately these procedures do not very well handle the corners of the
oxide�

While these low rank degradations can make the multigrid convergence slower� they do not greatly a	ect
the conjugate gradient procedure�

�� Numerical Results� A two�dimensional version of the multigrid algorithm described in the previous
section was incorporated into the DANCIR code� To evaluate the multigrid scheme� a number of experiments
have been performed on a variety of devices� Before illustrating these results we brie�y describe the devices
used in the comparison�
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Fig� �� JFET Device

���� JFET� The �rst model used consists of a junction �eld e	ect transistor �JFET� depicted in Figure
�� The simulation is started with zero volts on all of the contacts� Once the equilibrium solution is computed�
the voltage on the bottom and top contacts is gradually incremented �and the corresponding steady state
solutions are computed� until the �nal contact voltage is reached ���� Volts�� After this stage the drain
contact voltage is incremented until it attains a value of ��� Volts� The current�voltage characteristics
�computed with the DANCIR�MG code� are displayed in Figure ��

���� MOSFET�� The second test problem consists of a simple MOSFET device depicted in Figure
�� In this case the simulation starts at equilibrium� The gate contact is �rst incremented to ��� Volts and
�nally the drain value is incremented to 
�� Volts�

The current�voltage characteristics �computed with the DANCIR�MG code� are displayed in Figure ��

���� MOSFET�� This �nal device is our most complex device and corresponds to a ��
�� N�channel
MOSFET which has been used at Sandia for testing purposes� This device is depicted in Figure �� In this
case the simulation starts at equilibrium� The gate contact is �rst incremented to ��� Volts and �nally the
drain value is incremented to 
�� Volts�

The current�voltage characteristics �computed with the DANCIR�MG code� are displayed in Figure ��
These characteristics are standard for this device�

In Tables � � � we illustrate the total number of iterations for the conjugate gradient method and
the cpu time corresponding to an entire simulation where the conjugate gradient iterations for each linear
solve terminate when the residual is reduced by ����� In parenthesis we indicate the average number of
conjugate gradient iterations per linear solve� It should be noted that a less strict convergence criterion for
the linear subiterations is not considered in this paper� While a milder criteria may be more e�cient for
the overall nonlinear problem�� our focus is to compare linear solvers where it is best if both simulations

� In our experience� we have found that it can often be more e�cient to perform just a few multigrid sweeps for the two
carrier equations� However� it is necessary to solve somewhat accurately the Poisson equation for the potential� This is due
to the fact that the potential is exponentiated in the Gummel iteration� Thus� if the potential is not accurate �and these
inaccuracies are ampli�ed due to exponentiation�� the nonlinear path taken by the Gummel iteration can be suboptimal�
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Fig� �� Current�voltage characteristics for JFET�
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Table �

JFET results� iterations and time �in minutes� for �� Gummel iterations�

�multigrid and incomplete Cholesky preconditioned� follow the same nonlinear path� In the tables the
notation MG���X��
Y���� indicates that the multigrid preconditioner uses �� pre� and post�relaxation
iterations� of the �X� �P for point or L for alternating line� Gauss�Seidel procedure and �
 pre� and post�
relaxation iterations of the �Y� �P for point or L for alternating line� local Gauss�Seidel procedure on each grid
in the �� level hierarchy� All of the ILU results corresponds to ILU ��� which has the same sparsity pattern

� Actually� the post relaxation operator is the transpose of the prerelaxation operator� Thus� the prerelaxation operator uses
red�black Gauss�Seidel while the postrelaxation operator uses black�red Gauss�Seidel�
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Table �

MOSFET� results� iterations and time �in minutes� for �� Gummel iterations�

as the original �nite di	erence matrix�� As the tables illustrate� the multigrid code with point relaxation is
ine	ective for the harder problems �though it works quite well on the JFET problem�� On the other hand�
the multigrid with line relaxation can be a very e	ective solver as it requires far less iterations than the
corresponding ILU preconditioned code and that the overall run time is much better than the ILU code
even though the cost per iteration is greater� Speci�cally� for the larger grid JFET problem and the smaller
grid MOSFET� and MOSFET
 problem the multigrid code is between a factor of 
 and � times faster than

� The original DANCIR code allows for ILU���� ILU���� etc� Over a wide variety of numerical experiments� we have found
that the total run time is usually about the same using ILU��� as opposed to ILU��� �though the number of iterations is less
using ILU�����
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Table �

MOSFET� results� iterations and time �in minutes� for �	� Gummel iterations�

the ILU code� More importantly� the number of iterations per linear solve is relatively independent of the
grid size when using the multigrid preconditioner while it grows for the ILU scheme�� Thus� the savings
associated with multigrid are even greater for larger grids�

In terms of storage� our multigrid scheme requires slightly more storage than the ILU method� Specif�
ically� the ILU scheme requires the storage of the ILU preconditioner ��n for ��point symmetric di	erence
operators where n is the number of grid points�� In the multigrid scheme� we need additional storage for

� The number of multigrid iterations grows slightly for the JFET problem as the smaller grid is very easily solved by both
the ILU and the multigrid schemes�
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Table �

Total Simulation Time

the coarse grid versions of the matrix� the solution� and the right hand side �� �n�� for the coarse matrices
and � 
n�� for the coarse solutions and right hand sides�� Thus� the ILU requires an additional �n values
while multigrid requires an additional �n�� values� However� in our multigrid implementation we also store

��n��� intermediate values for interpolation and projection operators and 
��n��� intermediate values for
the factorization of the line solver�

We conclude this section by illustrating the total cpu time for each of device simulation in Table �� By
comparison with the earlier tables� the reader can verify that the conjugate gradient iteration dominates the
calculation and thus the multigrid savings are signi�cant with respect to the entire simulation time�
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�� Conclusions� We have incorporated a multigrid preconditioner into a semiconductor device mod�
eling code� To do this� a multigrid scheme was developed that could be used in cases that exhibited highly
variable PDE coe�cients and anisotropic behavior� In addition� special consideration had to be taken with
respect to certain device characterisitics such as oxide layers and small contact regions� The resulting scheme
is fast� parallel� and requires many fewer iterations than the ILU scheme that it replaced� On our sample
problems we improved the performance by a factor of between 
 and � over the ILU preconditioner� Exten�
sions to the ��dimensional case are straight�forward and planned for the future�

Finally� we note that while we have used a multigrid solver for the linear equations that arise within
Gummel�s method� there are potentially much greater savings if the Gummel technique can be replaced by
a nonlinear multigrid iteration� We have not pursued this� but we hope that this study will give insight into
this possibility�
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